GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction

Shuangli Li,^{1, 2*} Jingbo Zhou,² Tong Xu,¹ Dejing Dou,² Hui Xiong³

¹University of Science and Technology of China, ²Business Intelligence Lab, Baidu Research ³Artificial Intelligence Thrust, The Hong Kong University of Science and Technology lsl1997@mail.ustc.edu.cn, {zhoujingbo, doudejing}@baidu.com, tongxu@ustc.edu.cn, xionghui@ust.hk

https://github.com/agave233/GeomGCL

2022. 12. 22 • ChongQing

2022_AAAI

Introduction

Drop Node

(b) Molecular

Perturb Edge

aspirin

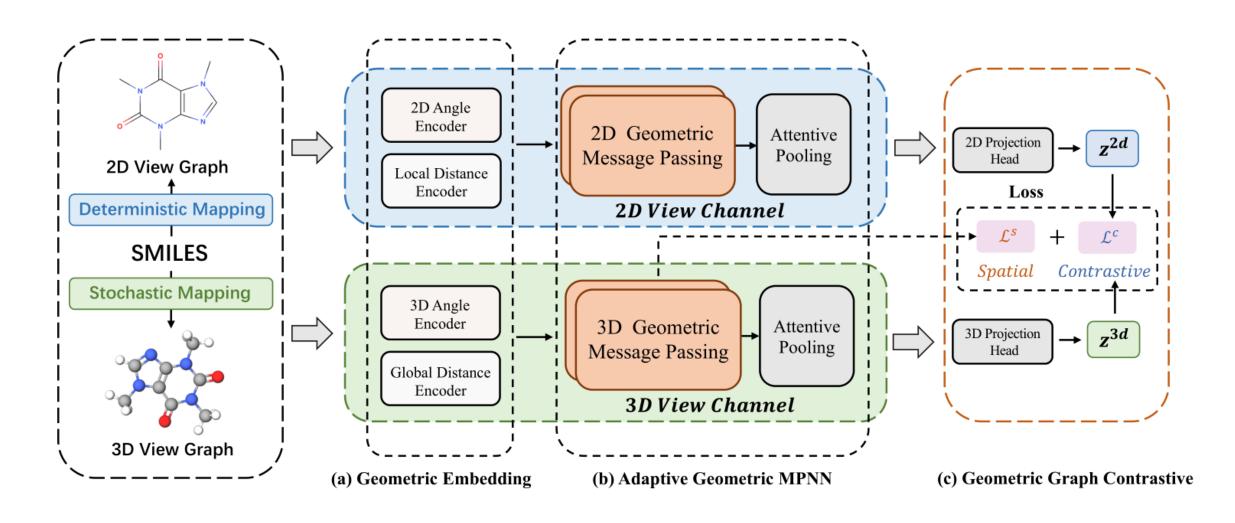
alkene

aspirin

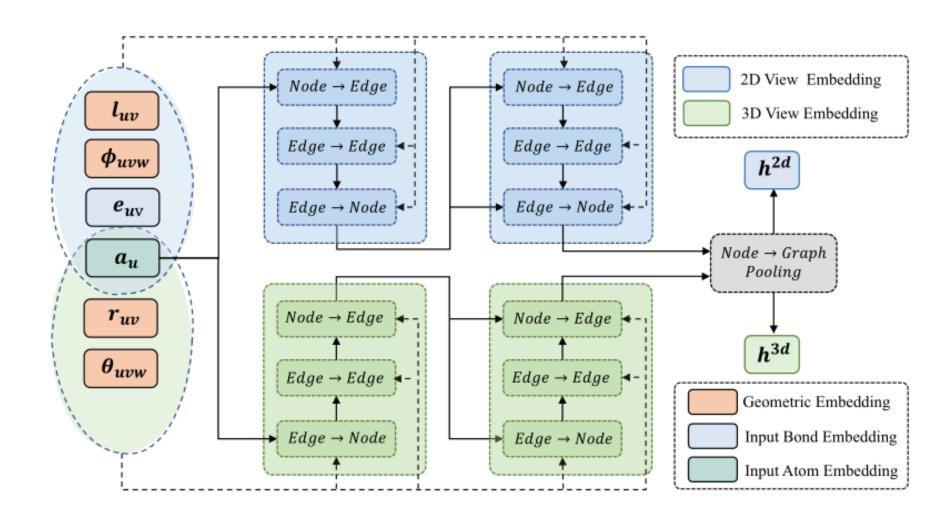
$$\gamma$$
 - lactone

[2112.02472] Augmentation-Free Self-Supervised Learning on Graphs (arxiv.org)

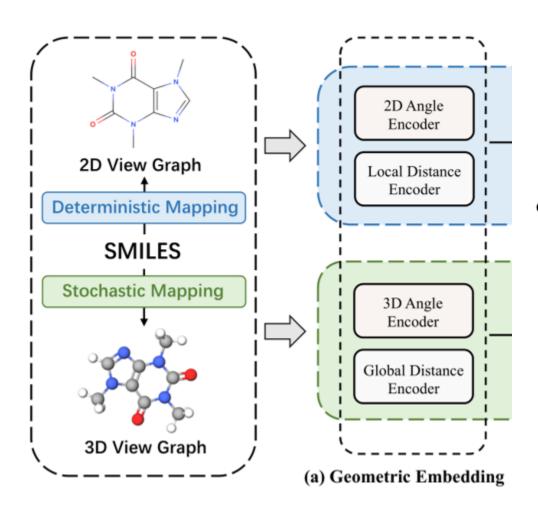
Overview



Overview



Method



$$\boldsymbol{l} = RBF(l) = \bigcap_{k=1}^{K} \exp\left(-\beta_l(\exp(-l) - \mu_{l,k})^2\right)$$
 (1)

$$\mathbf{r} = RBF(r) = \widehat{\sum_{k=1}^{K}} \exp\left(-\beta_r(\exp(-r) - \mu_{r,k})^2\right) \quad (2)$$

$$\phi = RBF(\phi) = \stackrel{K}{\underset{k=1}{\frown}} \exp(-\beta_{\phi}(\phi - \mu_{\phi,k})^2)$$
 (3)

$$\boldsymbol{\theta} = RBF(\theta) = \sum_{k=1}^{K} \exp\left(-\beta_{\theta}(\theta - \mu_{\theta,k})^{2}\right) \tag{4}$$

the K central points $\{\mu_{*,k}\}$ are uniformly selected between $\exp(-*)$ (* is l or d) and 1, while $\beta_* = (\frac{2}{K}(1 - \exp(-*))^{-2})$.

For 2D and 3D angles, each $\mu_{*,k}$ is between 0 and π with $\beta_* = (\frac{2\pi}{K})^{-2}$, where * denotes ϕ or θ .

2D Geometric Attentive Pooling Message Passing 2D View Channel Attentive 3D Geometric Pooling Message Passing 3D View Channel

(b) Adaptive Geometric MPNN

Method

Node→Edge Message Passing

$$e_{uv}^{2d,t} = MLP(a_u^{2d,t-1} || a_v^{2d,t-1} || e_{uv}^0)$$
 (5)

$$e_{uv}^{3d,t} = MLP(a_u^{3d,t-1} || a_v^{3d,t-1} || r_{uv})$$
 (6)

Edge→**Edge** Message Passing

$$\boldsymbol{e}_{uv}^{2d,t} = \sum_{e_{wu} \in \mathcal{A}(e_{uv})} W_{\phi}^{t} \boldsymbol{\phi}_{wuv} \odot (W_{e}^{t} \boldsymbol{e}_{uv}^{2d,t}) \tag{7}$$

$$\boldsymbol{e}_{uv,i}^{3d,t} = \sum_{e_{wu} \in \mathcal{A}_i(e_{uv})} W_{\theta,i}^t \boldsymbol{\theta}_{wuv} \odot (W_{e,i}^t \boldsymbol{e}_{uv}^{3d,t})$$
(8)

$$e_{uv}^{3d,t} = \prod_{i=1}^{n} \text{Pool}(\{e_{uv,i}^{3d,t}|1 \le i \le n\}) \odot e_{uv,i}^{3d,t}$$
 (9)

2D Geometric Attentive Pooling Message Passing 2D View Channel Attentive 3D Geometric Pooling Message Passing 3D View Channel (b) Adaptive Geometric MPNN

Method

Edge→**Node Message Passing**

$$\boldsymbol{a}_{v}^{2d,t} = \sum_{e_{uv} \in \mathcal{D}(a_{v})} W_{l}^{t} \boldsymbol{l}_{uv} \odot (W_{a}^{t} \boldsymbol{e}_{uv}^{2d,t})$$
 (10)

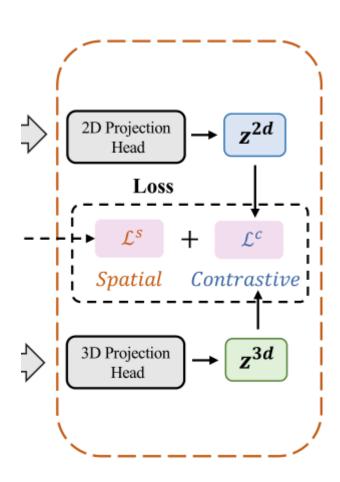
$$\boldsymbol{a}_{v}^{3d,t} = \prod_{i=1}^{m} \sum_{e_{uv} \in \mathcal{D}_{i}(a_{v})} W_{r,i}^{t} \boldsymbol{r}_{uv} \odot (W_{a,i}^{t} \boldsymbol{e}_{uv}^{3d,t})$$
 (11)

Node→**Graph Attentive Pooling**

$$\boldsymbol{g}^{t} = \sum_{a_{v} \in \mathcal{V}} \operatorname{softmax}(\boldsymbol{h}^{t} \parallel \boldsymbol{a}_{v}) W_{g}^{t} \boldsymbol{a}_{v}$$
 (12)

$$h^{t+1} = GRU(h^t, g^t), t = 0, 1, ..., T_g$$
 (13)

Method



$$\mathbf{z}_{i}^{2d} = MLP(\mathbf{h}_{i}^{2d}), \quad \mathbf{z}_{i}^{3d} = MLP(\mathbf{h}_{i}^{3d}) \qquad (14)$$

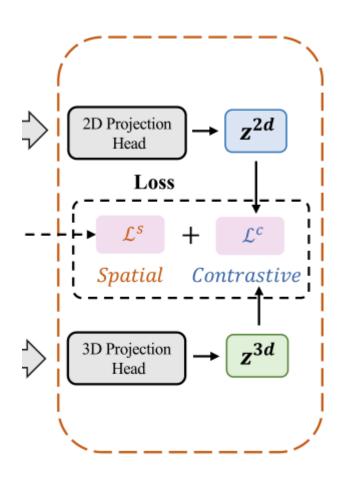
$$\mathcal{L}_{i}^{c} = \mathcal{L}_{i}^{2d,c} + \mathcal{L}_{i}^{3d,c}$$

$$= -\log \frac{e^{\langle \mathbf{z}_{i}^{2d}, \mathbf{z}_{i}^{3d} \rangle / \tau}}{\sum_{j=1}^{N} e^{\langle \mathbf{z}_{i}^{2d}, \mathbf{z}_{j}^{3d} \rangle / \tau}} - \log \frac{e^{\langle \mathbf{z}_{i}^{3d}, \mathbf{z}_{i}^{2d} \rangle / \tau}}{\sum_{j=1}^{N} e^{\langle \mathbf{z}_{i}^{3d}, \mathbf{z}_{j}^{2d} \rangle / \tau}}$$

$$\mathcal{L}^{s} = \sum_{t=1}^{T} \sum_{i=1}^{n-1} \|W_{\theta, i+1}^{t} - W_{\theta, i}^{t}\|^{2} \qquad (16)$$

(c) Geometric Graph Contrastive

Method



$$\hat{y} = MLP(MLP(f_{2d}(\mathcal{G}^{2d})) + MLP(f_{3d}(\mathcal{G}^{3d})))$$

$$\mathcal{L}_{cls} = \mathcal{L}_{ce}(\hat{y}, y) + \lambda \mathcal{L}^{s}$$

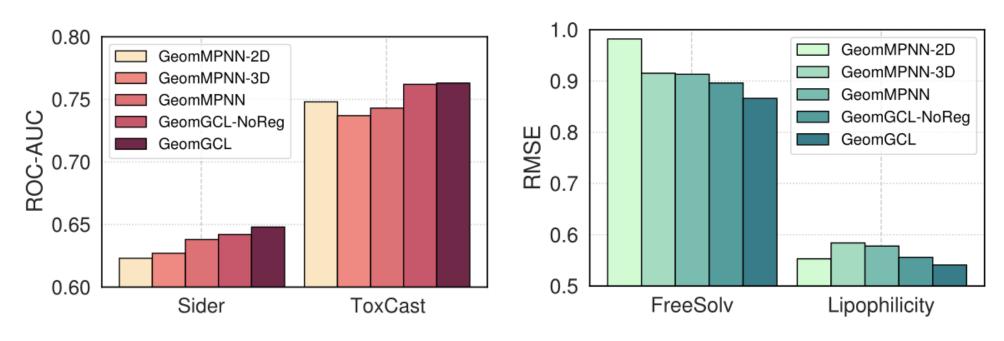
$$\mathcal{L}_{reg} = \mathcal{L}_{1}(\hat{y}, y) + \lambda \mathcal{L}^{s}$$
(19)
$$\mathcal{L}_{reg} = \mathcal{L}_{1}(\hat{y}, y) + \lambda \mathcal{L}^{s}$$
(20)

(c) Geometric Graph Contrastive

Dataset	# Tasks	Task Type	# Molecules		
ClinTox	2	Classification	1484		
Sider	27	Classification	1427		
Tox21	12	Classification	7831		
ToxCast	617	Classification	8597		
ESOL	1	Regression	1128		
FreeSolv	1	Regression	643		
Lipophilicity	1	Regression	4200		

Table 1: Statistics of seven molecular datasets.

Model	Graph Classification (ROC-AUC) ↑				Graph Regression (RMSE) ↓				
	ClinTox	Sider	Tox21	ToxCast	Cls.Ave	ESOL	FreeSolv	Lipophilicity	Reg.Ave
AttentiveFP	0.808	0.605	0.835	0.743	0.748	0.578	1.034	0.602	0.738
DMPNN	0.886	0.637	0.848	0.743	0.779	0.647	1.092	0.591	0.777
CoMPT	0.877	0.626	0.836	0.755	0.774	0.589	1.103	0.590	0.761
SGCN	0.825	0.560	0.769	0.656	0.703	1.329	2.061	1.075	1.488
MAT	0.898	0.619	0.834	0.735	0.772	0.624	1.059	0.705	0.796
HMGNN	0.680	0.607	0.794	0.702	0.696	0.701	1.207	0.720	0.876
DimeNet	0.760	0.615	0.780	0.645	0.7000	0.633	0.978	0.614	0.742
InfoGraph	0.781	0.585	0.793	0.705	0.716	0.914	2.104	0.845	1.288
MoCL	0.739	0.629	0.824	0.718	0.727	0.934	1.478	0.742	1.051
GeomMPNN	0.900	0.638	0.838	0.743	0.780	0.555	0.913	0.578	0.682
GeomGCL	0.919	0.648	0.850	0.763	0.796	0.575	0.866	0.541	0.661



(a) Results for Classification

(b) Results for Regression

Figure 4: Evaluation of GeomGCL with its variants.

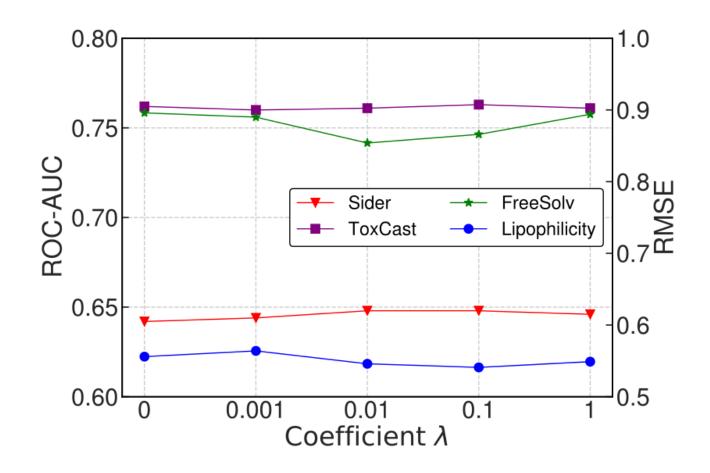


Figure 5: Analysis for the balancing parameter of \mathcal{L}^s

Thank you!

